13 resultados para ONCOTIC NECROSIS

em eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herpesviral haematopoietic necrosis is a disease of goldfish, Carassius auratus, caused by Cyprinid herpesvirus-2 (CyHV-2) infection. Quantitative PCR was carried out on tissue homogenates from healthy goldfish fingerlings, broodfish, eggs and fry directly sampled from commercial farms, from moribund fish submitted to our laboratory for disease diagnosis, and on naturally-infected CyHV-2 carriers subjected to experimental stress treatments. Healthy fish from 14 of 18 farms were positive with copy numbers ranging from tens to 10(7) copies mu g(-1) DNA extracted from infected fish. Of 118 pools of broodfish tested, 42 were positive. The CyHV-2 was detected in one lot of fry produced from disinfected eggs. Testing of moribund goldfish, in which we could not detect any other pathogens, produced 12 of 30 cases with 10(6)-10(8) copies of CyHV-2 mu g(-1) DNA extracted. Subjecting healthy CyHV-2 carriers to cold shock (22-10 degrees C) but not heat, ammonia or high pH, increased viral copy numbers from mean copy number (+/- SE) of 7.3 +/- 11 to 394 +/- 55 mu g(-1) DNA extracted after 24 h. CyHV-2 is widespread on commercial goldfish farms and outbreaks apparently occur when healthy carriers are subjected to a sharp temperature drop followed by holding at the permissive temperature for the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When recapturing satellite collared wild dogs that had been trapped one month previous in padded foothold traps, we noticed varying degrees of pitting on the pads of their trapped paw. Veterinary advice, based on images taken of the injuries, suggests that the necrosis was caused by vascular compromise. Five of six dingoes we recaptured had varying degrees of necrosis restricted only to the trapped foot and ranging from single 5 mm holes to 25% sections of the toe pads missing or deformed, including loss of nails. The traps used were rubber-padded, two–coiled, Victor Soft Catch #3 traps. The springs are not standard Victor springs but were Beefer springs; these modifications slightly increase trap speed and the jaw pressure on the trapped foot. Despite this modification the spring pressure is still relatively mild in comparison to conventional long spring or four-coiled wild dog traps. The five wild dogs developing necrosis were trapped in November 2006 at 5-6 months of age. Traps were checked each morning so the dogs were unlikely to have been restrained in the trap for more than 12 hours. All dogs exhibited a small degree of paw damage at capture which presented itself as a swollen paw and compression at the capture point. In contrast, eight wild dogs, 7-8 month-old, were captured two months later in February. Upon their release, on advice from a veterinarian, we massaged the trapped foot to get blood flow back in to the foot and applied a bruise treatment (Heparinoid 8.33 mg/ml) to assist restoring blood flow. These animals were subsequently recaptured several months later and showed no signs of necrosis. While post-capture foot injuries are unlikely to be an issue in conventional control programs where the animal is immediately destroyed, caution needs to be used when releasing accidentally captured domestic dogs or research animals captured in rubber-padded traps. We have demonstrated that 7-8 month old dogs can be trapped and released without any evidence of subsequent necrosis following minimal veterinary treatment. We suspect that the rubber padding on traps may increase the tourniquet effect by wrapping around the paw and recommend the evaluation of offset laminated steel jaw traps as an alternative. Offset laminated steel jaw traps have been shown to be relatively humane producing as few foot injuries as rubber-jawed traps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tomato spotted wilt virus (genus Tospovirus) is recorded on chickpea (Cicer arietinum) in Australia for the first time. It caused shoot tip symptoms of wilting, necrosis, bunching and chlorosis, followed by premature death of plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five cases of aflatoxicosis in pigs in southern Queensland are described. One peracute case where aflatoxin concentrations of up to 5000pg aflatoxin B,/kg were demonstrated in stomach contents was presumed to be caused by consumption of mouldy bread. High levels of toxins were also present in the livers. Two cases of acute toxicity were caused by feeding mouldy peanut screenings containing 22000~9 aflatoxin B,/kg. One case of subacute and one of chronic toxicity were caused by sorghum grain based rations with lower aflatoxin levels (4640 and 255 pg/kg). Peracute toxicity caused collapse and deaths within several hours, acute toxicity caused deaths within 12 h and with subacute toxicity deaths occured after 3 weeks on a toxic ration. Anorexia and ill thrift affecting only growing animals were seen with chronic toxicity. Extensive centrilobular liver necrosis and haemorrhage occured with peracute toxicity and in cases of acute poisoning there was hepatic centrilobular cellular infiltration, hepatocyte swelling and bile stasis. With subacute toxicity hepatocyte vacuolation together with bile stasis and bile ductule hyperplasia were seen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eriophyid mites (Acari: Eriophyoidea: Eriophyidae: Rhombacus sp. and Acalox ptychocarpi Keifer) are recently-emerged pests of commercial eucalypt plantations in subtropical Australia. They cause severe blistering, necrosis and leaf loss to Corymbia citriodora subsp. variegata (F. Muell.) K.D. Hill & L.A.S. Johnson, one of the region's most important hardwood plantation species. In this study we examine the progression, incidence and severity of these damage symptoms. We also measure within-branch colonisation by mites to identify dispersive stages, and estimate the relative abundance of the two co-occurring species. Rhombacus sp., an undescribed species, was numerically dominant, accounting for over 90% of all adult mites. Adults were the dispersive stage, moving mostly within branches, but 12% of recruitment onto new leaves occurred on previously uninfested branches. Damage incidence and severity were correlated, while older leaves had more damage than younger leaves. "Patch-type" damage was less frequent but was associated with higher mite numbers and damage scores than "spot-type" damage, while leaf discoloration symptoms related mostly to leaf age.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Australia, disease caused by betanodavirus has been reported in an increasing number of cultured finfish since the first report of mortalities in 1990. Partial coat protein gene sequences from the T2 or T4 regions of 8 betanodaviruses from barramundi Lates calcarifer, sleepy cod Oxyeleotris lineolata, striped trumpeter Latris lineata, barramundi cod Cromileptes altivelis, Australian bass Macquaria novemaculata and gold-spotted rockcod Epinephelus coioides from several Australian states were determined. Analysis of the 606 bp nucleotide sequences of the T2 region of 4 isolates demonstrated the close relationship with isolates from the red-spotted grouper nervous necrosis virus (RGNNV) genotype and the Cluster Ia subtype. Comparison of a smaller 289 bp sequence from the T4 region identified 2 distinct groupings of the Australian isolates within the RGNNV genotype. Isolates from barramundi from the Northern Territory, barramundi, sleepy cod, barramundi cod and gold-spotted rockcod from Queensland, and striped trumpeter from Tasmania shared a 96.2 to 99.7%, nucleotide identity with each other. These isolates were most similar to the RGNNV genotype Cluster Ia. Isolates from Australian bass from New South Wales and from barramundi from South Australia shared a 98.6% sequence identity with each other. However, these isolates only shared an 85.8 to 87.9%, identity with the other Australian isolates and representative RGNNV isolates. The closest nucleotide identity to sequences reported in the literature for the New South Wales and South Australian isolates was to an Australian barramundi isolate (Ba94Aus) from 1994. These 2 Australian isolates formed a new subtype within the RGNNV genotype, which is designated as Cluster Ic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hendersonia osteospermi was found for the first time in Australia on leaf spots of the introduced invasive plant Chrysanthemoides monilifera ssp. rotundata (bitou bush) in coastal regions of New South Wales. Pathogenicity tests on species from 11 tribes in the family Asteraceae, demonstrated that H. osteospermi caused severe necrosis on leaves and stems of C. monilifera ssp. rotundata and its congener C. monilifera ssp. monilifera (boneseed). Small necrotic spots also developed on Osteospermum fruticosum and Dimorphotheca cuneata in the Calenduleae and on Helianthus annuus (sunflower) in the Heliantheae. None of the other plant species tested developed leaf spots, although H. osteospermi was re-isolated from senescent leaves of Cynara scolymus (globe artichoke) in the Cynareae and Vernonia cinerea in the Vernonieae. Single ascospores from ascomata of a Pleospora-like fungus found on diseased stems of bitou bush produced H. osteospermi in culture, which proved the anamorph/teleomorph connection. The ITS region of both a single-ascospore isolate and a single-conidium isolate were sequenced and found to be identical. The taxonomic status of H. osteospermi is re-examined and Austropleospora osteospermi gen. et sp. nov. is described as its teleomorph based on morphology, host range tests and DNA sequence analysis. The potential of A. osteospermi for the biological control of bitou bush and boneseed in Australia is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2006, Tobacco streak virus (TSV) was identified as the causal agent of the devastating sunflower necrosis disease in central Queensland (CQ), and subsequently in 2007 as the cause of major losses in mungbeans in the same area. It has been a major factor in the recent downturn in the sunflower industry in CQ. Surveys in 2007/2008 as part of a one year scoping study (project 03DAQ005) found TSV in cotton in CQ. The symptoms were mostly confined to the feeding sites of the thrips and appeared as reddish spots and rings, but only occasionally the plants were systemically infected and showed a chlorotic mosaic and leaf deformation. The major objectives of this project (DAQ0002) were to determine: the incidence and distribution of TSV in cotton and its likely effect on yield; the thrips vector species associated with TSV infections in cotton; and the factors that may lead to systemic infections. In contrast to the extensive damage observed in sunflower and mungbean crops from the same region, TSV has caused no measurable damage in commercial cotton crops surveyed in CQ over the seasons 2008/9 to 2010/11. No TSV infected cotton was found in regions outside of CQ and the geographical distribution of TSV disease in cotton (and other susceptible hosts) appears to be closely related to the distribution of the major alternative host, parthenium weed. The most likely thrips species responsible for transmission of TSV into cotton is the tomato thrips (Frankliniella schultzei) and onion thrips (Thrips tabaci). Systemically infected plants are rarely seen in commercial crops and have also been rarely produced in controlled tests. It appears that systemic infection may be transient with only mild symptoms being produced intermittently. With current cultivars and conditions, it appears likely that TSV will continue to cause only minor levels of mild local lesions with no impact on yield in cotton crops. It appears that no specific control strategies are required to limit the impact of TSV in cotton. However, general farm hygiene to minimise the presence of the major alternative host of TSV, parthenium weed, is advised and may be of vital importance if TSV susceptible rotational crops such as mung beans are grown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A suite of co-occurring eriophyid mite species are significant pests in subtropical Australia, causing severe discolouration, blistering, necrosis and leaf loss to one of the region's most important hardwood species, Corymbia citriodora subsp. variegata (F. Muell.) K. D. Hill & L. A. S. Johnson (Myrtaceae). In this study, we examined mite population dynamics and leaf damage over a 1-year period in a commercial plantation of C. citriodora subsp. variegata. Our aims were to link the incidence and severity of mite damage, and mite numbers, to leaf physical traits (moisture content and specific leaf weight (SLW)); to identify any seasonal changes in leaf surface occupancy (upper vs. lower lamina); and host tree canopy strata (upper, mid or lower canopy). We compared population trends with site rainfall, temperature and humidity. We also examined physical and anatomical changes in leaf tissue in response to mite infestation to characterize the plants' physiological reaction to feeding, and how this might affect photosynthesis. Our main findings included positive correlations with leaf moisture content and mite numbers and with mite numbers and damage severity. Wet and dry leaf mass and SLW were greater for damaged tissue than undamaged tissue. Mites were distributed equally throughout the canopy and on both leaf surfaces. No relationships with climatic factors were found. Damage symptoms occurred equally and were exactly mirrored on both leaf surfaces. Mite infestation increased the overall epidermal thickness and the number and size of epidermal cells and was also associated with a rapid loss of chloroplasts from mesophyll cells beneath damage sites. The integrity of the stomatal complex was severely compromised in damaged tissues. These histological changes suggest that damage by these mites will negatively impact the photosynthetic efficiency of susceptible plantation species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A suite of co-occurring eriophyid mite species are significant pests in subtropical Australia, causing severe discolouration, blistering, necrosis and leaf loss to one of the region's most important hardwood species, Corymbia citriodora subsp. variegata (F. Muell.) K. D. Hill & L. A. S. Johnson (Myrtaceae). In this study, we examined mite population dynamics and leaf damage over a 1-year period in a commercial plantation of C. citriodora subsp. variegata. Our aims were to link the incidence and severity of mite damage, and mite numbers, to leaf physical traits (moisture content and specific leaf weight (SLW)); to identify any seasonal changes in leaf surface occupancy (upper vs. lower lamina); and host tree canopy strata (upper, mid or lower canopy). We compared population trends with site rainfall, temperature and humidity. We also examined physical and anatomical changes in leaf tissue in response to mite infestation to characterize the plants' physiological reaction to feeding, and how this might affect photosynthesis. Our main findings included positive correlations with leaf moisture content and mite numbers and with mite numbers and damage severity. Wet and dry leaf mass and SLW were greater for damaged tissue than undamaged tissue. Mites were distributed equally throughout the canopy and on both leaf surfaces. No relationships with climatic factors were found. Damage symptoms occurred equally and were exactly mirrored on both leaf surfaces. Mite infestation increased the overall epidermal thickness and the number and size of epidermal cells and was also associated with a rapid loss of chloroplasts from mesophyll cells beneath damage sites. The integrity of the stomatal complex was severely compromised in damaged tissues. These histological changes suggest that damage by these mites will negatively impact the photosynthetic efficiency of susceptible plantation species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three ponies continuously grazed a pasture containing an estimated 24% Indigofera spicata (wet weight basis) for 4–6 weeks in April and May 2004. They developed ataxia, paresis, depression, muscle fasciculations, dysphagia, ptyalism and halitosis. Two also developed corneal opacity. One pony recovered with supportive treatment, but the other two were euthanased and necropsied. Neuropathology was not present in either case, but both livers had periacinar and periportal lymphocytic infiltrations and hydropic degeneration of mid-zonal hepatocytes, with mild to moderate periacinar necrosis also evident in one. The I. spicata contained 2.66 mg 3-nitropropionic acid (3-NPA)/g dry matter and 1.5 mg indospicine/g dry matter. Indospicine, but not 3-NPA, was detected in serum from both of the euthanased ponies and indospicine was detected in heart, liver and muscle from the one pony in which this assay was performed. The clinical syndrome closely resembled ‘Birdsville horse disease’ caused by I. linnaei and was similar to that reported in horses poisoned by the closely related species I. hendecaphylla and to 3-NPA poisoning of other animals, including humans. 3-NPA is thought to cause this neurological syndrome. To our knowledge, this is the first authenticated report of I. spicata poisoning in grazing animals. We also report here the first published evidence that 3-NPA and indospicine exist in naturalised I. spicata in Australia and of the formation of indospicine residues in tissues of animals grazing paddocks infested with I. spicata.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A quarter of Australia’s sunflower production is from the central highlands region of Queensland and is currently worth six million dollars ($AUD) annually. From the early 2000s a severe necrosis disorder of unknown aetiology was affecting large areas of sunflower crops in central Queensland, leading to annual losses of up to 20%. Other crops such as mung bean and cotton were also affected. This PhD study was undertaken to determine if the causal agent of the necrosis disorder was of viral origin and, if so, to characterise its genetic diversity, biology and disease cycle, and to develop effective control strategies. The research described in this thesis identified Tobacco streak virus (TSV; genus Ilarvirus, family Bromoviridae) as the causal agent of the previously unidentified necrosis disorder of sunflower in central Queensland. TSV was also the cause of commonly found diseases in a range of other crops in the same region including cotton, chickpea and mung bean. This was the first report from Australia of natural field infections of TSV from these four crops. TSV strains have previously been reported from other regions of Australia in several hosts based on serological and host range studies. In order to determine the relatedness of previously reported TSV strains with TSV from central Queensland, we characterised the genetic diversity of the known TSV strains from Australia. We identified two genetically distinct TSV strains from central Queensland and named them based on their major alternative hosts, TSV-parthenium from Parthenium hysterophorus and TSV-crownbeard from Verbesina encelioides. They share only 81 % total-genome nucleotide sequence identity. In addition to TSV-parthenium and TSV-crownbeard from central Queensland, we also described the complete genomes of two other ilarvirus species. This proved that previously reported TSV strains, TSV-S isolated from strawberry and TSV-Ag from Ageratum houstonianum, were actually the first record of Strawberry necrotic shock virus from Australia, and a new subgroup 1 ilarvirus, Ageratum latent virus. Our results confirmed that the TSV strains found in central Queensland were not related to previously described strains from Australia and may represent new incursions. This is the first report of the genetic diversity within subgroup 1 ilarviruses from Australia. Based on field observations we hypothesised that parthenium and crownbeard were acting as symptomless hosts of TSV-parthenium and TSV-crownbeard, respectively. We developed strain-specific multiplex PCRs for the three RNA segments to accurately characterise the range of naturally infected hosts across central Queensland. Results described in this thesis show compelling evidence that parthenium and crownbeard are the major (symptomless) alternative hosts of TSV-parthenium and TSV-crownbeard. While both TSV strains had wide natural host ranges, the geographical distribution of each strain was closely associated with the respective distribution of their major alternative hosts. Both TSV strains were commonly found across large areas of central Queensland, but we only found strong evidence for the TSV-parthenium strain being associated with major disease outbreaks in nearby crops. The findings from this study demonstrate that both TSV-parthenium and TSV-crownbeard have similar life cycles but some critical differences. We found both TSV strains to be highly seed transmitted from their respective major alternative hosts from naturally infected mother plants and survived in seed for more than 2 years. We conclusively demonstrated that both TSV strains were readily transmitted via virus-infected pollen taken from the major alternative hosts. This transmission was facilitated by the most commonly collected thrips species, Frankliniella schultzei and Microcephalothrips abdominalis. These results illustrate the importance of seed transmission and efficient thrips vector species for the effective survival of these TSV strains in an often harsh environment and enables the rapid development of TSV disease epidemics in surrounding crops. Results from field surveys and inoculation tests indicate that parthenium is a poor host of TSV-crownbeard. By contrast, crownbeard was naturally infected by, and an experimental host of TSV-parthenium. However, this infection combination resulted in non-viable crownbeard seed. These differences appear to be an effective biological barrier that largely restricts these two TSV strains to their respective major alternative hosts. Based on our field observations we hypothesised that there were differences in relative tolerance to TSV infection between different sunflower hybrids and that seasonal variation in disease levels was related to rainfall in the critical early crop stage. Results from our field trials conducted over multiple years conclusively demonstrated significant differences in tolerance to natural infections of TSV-parthenium in a wide range of sunflower hybrids. Glasshouse tests indicate the resistance to TSV-parthenium identified in the sunflower hybrids is also likely to be effective against TSV-crownbeard. We found a significant negative association between TSV disease incidence in sunflowers and accumulated rainfall in the months of March and April with increasing rainfall resulting in reduced levels of disease. Our results indicate that the use of tolerant sunflower germplasm will be a critical strategy to minimise the risk of TSV epidemics in sunflower.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A quarter of Australia’s sunflower production is from the central highlands region of Queensland and is currently worth six million dollars ($AUD) annually. From the early 2000s a severe necrosis disorder of unknown aetiology was affecting large areas of sunflower crops in central Queensland, leading to annual losses of up to 20%. Other crops such as mung bean and cotton were also affected. This PhD study was undertaken to determine if the causal agent of the necrosis disorder was of viral origin and, if so, to characterise its genetic diversity, biology and disease cycle, and to develop effective control strategies. The research described in this thesis identified Tobacco streak virus (TSV; genus Ilarvirus, family Bromoviridae) as the causal agent of the previously unidentified necrosis disorder of sunflower in central Queensland. TSV was also the cause of commonly found diseases in a range of other crops in the same region including cotton, chickpea and mung bean. This was the first report from Australia of natural field infections of TSV from these four crops. TSV strains have previously been reported from other regions of Australia in several hosts based on serological and host range studies. In order to determine the relatedness of previously reported TSV strains with TSV from central Queensland, we characterised the genetic diversity of the known TSV strains from Australia. We identified two genetically distinct TSV strains from central Queensland and named them based on their major alternative hosts, TSV-parthenium from Parthenium hysterophorus and TSV-crownbeard from Verbesina encelioides. They share only 81 % total-genome nucleotide sequence identity. In addition to TSV-parthenium and TSV-crownbeard from central Queensland, we also described the complete genomes of two other ilarvirus species. This proved that previously reported TSV strains, TSV-S isolated from strawberry and TSV-Ag from Ageratum houstonianum, were actually the first record of Strawberry necrotic shock virus from Australia, and a new subgroup 1 ilarvirus, Ageratum latent virus. Our results confirmed that the TSV strains found in central Queensland were not related to previously described strains from Australia and may represent new incursions. This is the first report of the genetic diversity within subgroup 1 ilarviruses from Australia. Based on field observations we hypothesised that parthenium and crownbeard were acting as symptomless hosts of TSV-parthenium and TSV-crownbeard, respectively. We developed strain-specific multiplex PCRs for the three RNA segments to accurately characterise the range of naturally infected hosts across central Queensland. Results described in this thesis show compelling evidence that parthenium and crownbeard are the major (symptomless) alternative hosts of TSV-parthenium and TSV-crownbeard. While both TSV strains had wide natural host ranges, the geographical distribution of each strain was closely associated with the respective distribution of their major alternative hosts. Both TSV strains were commonly found across large areas of central Queensland, but we only found strong evidence for the TSV-parthenium strain being associated with major disease outbreaks in nearby crops. The findings from this study demonstrate that both TSV-parthenium and TSV-crownbeard have similar life cycles but some critical differences. We found both TSV strains to be highly seed transmitted from their respective major alternative hosts from naturally infected mother plants and survived in seed for more than 2 years. We conclusively demonstrated that both TSV strains were readily transmitted via virus-infected pollen taken from the major alternative hosts. This transmission was facilitated by the most commonly collected thrips species, Frankliniella schultzei and Microcephalothrips abdominalis. These results illustrate the importance of seed transmission and efficient thrips vector species for the effective survival of these TSV strains in an often harsh environment and enables the rapid development of TSV disease epidemics in surrounding crops. Results from field surveys and inoculation tests indicate that parthenium is a poor host of TSV-crownbeard. By contrast, crownbeard was naturally infected by, and an experimental host of TSV-parthenium. However, this infection combination resulted in non-viable crownbeard seed. These differences appear to be an effective biological barrier that largely restricts these two TSV strains to their respective major alternative hosts. Based on our field observations we hypothesised that there were differences in relative tolerance to TSV infection between different sunflower hybrids and that seasonal variation in disease levels was related to rainfall in the critical early crop stage. Results from our field trials conducted over multiple years conclusively demonstrated significant differences in tolerance to natural infections of TSV-parthenium in a wide range of sunflower hybrids. Glasshouse tests indicate the resistance to TSV-parthenium identified in the sunflower hybrids is also likely to be effective against TSV-crownbeard. We found a significant negative association between TSV disease incidence in sunflowers and accumulated rainfall in the months of March and April with increasing rainfall resulting in reduced levels of disease. Our results indicate that the use of tolerant sunflower germplasm will be a critical strategy to minimise the risk of TSV epidemics in sunflower.